SPECIFICATIONS

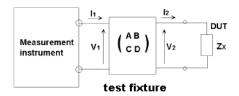
Customer							
Product Name		Thin Film RF Inductor					
Sunlord Part N	umber			UHQ0	402H-P01	Series	
Customer Part	Number						
⊠New Releas	ed,	vised]			SPI	EC No.:	UHQ030
【This SPEC is tot 【ROHS, Halogen-			• .		and append	ix.]	
	Approve	d By	Check	ced By	Issued	By	
	прріото	u Dy	Ciloui	tou by	100000		
Chan-h	on Su	مامد	u al Γ	-1004	ronio	- C	- 14
Shenzh ddress: Sunlord In 1: 0086-755-29832 For Customer ap	dustrial Park 2333 p roval Onl y	k, Dafuyu Fax: 008	uan Indu 86-755-	ustrial Zor 82269029	ne, Baoan, S E-Ma Date:	Shenzher	•
Idress: Sunlord In I: 0086-755-29832 For Customer ap Qualification Status	dustrial Park 2333 p proval Only s:	k, Dafuyu Fax: 008 y] Full	uan Indu 86-755- □ R€	ustrial Zor 82269029	ne, Baoan, S E-Ma Date: Reje	Shenzher il: sunlore	, China d@sunlord
ddress: Sunlord In l: 0086-755-29832 For Customer ap	dustrial Park 2333 p proval Only s:	k, Dafuyu Fax: 008	uan Indu 86-755- □ R€	ustrial Zor 82269029	ne, Baoan, S E-Ma Date:	Shenzher il: sunlore	n, China
Idress: Sunlord In I: 0086-755-29832 For Customer ap Qualification Status	dustrial Park 2333 p proval Only s:	k, Dafuyu Fax: 008 y] Full	uan Indu 86-755- □ R€	ustrial Zor 82269029	ne, Baoan, S E-Ma Date: Reje	Shenzher il: sunlore	, China d@sunlord

Sunlord

【Version change history】

Rev.	Effective Date	Changed Contents	Change reasons	Approved By	
01	/	New release	/	Xiangdong Zeng	

All products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially Super reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.


- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. nuclear control equipment
- 5. military equipment
- 6. Power plant equipment
- 7. Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.) 8.

Categories: general confidential

- Traffic signal equipment
- 10. Disaster prevention / crime prevention equipment
- 11. Data-processing equipment
- 12. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

Measuring Method of Inductance

Residual elements and stray elements of test fixture can be described by F-parameter as shown in the following:

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}$$
$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} AV_2 + BI_2 \\ CV_2 + DI_2 \end{bmatrix}$$

Measured open impedance: $Zom = \frac{A}{B}$ Measured short impedance: $Zsm = \frac{B}{B}$ Measured short ship impedance: ZsD $\approx -Z_{SC}$ (when uses short chip to short)

Measured value: Zxm=V₁/I₁ Impedance of DUT: Zx=V₂/I₂

The relation between Zx and Zom, Zsm, Zxm is shown in the following:

ation between Zx and Zom, Zsm, Zxm is shown in the following
$$Zx = \frac{V_2}{I_2} = \frac{D}{A} * \frac{\frac{V_1}{I_1} - \frac{B}{D}}{1 - \frac{V_1}{I_1} * \frac{C}{A}} = \frac{D}{A} * \frac{Zxm - \frac{B}{D}}{1 - Zxm * \frac{C}{A}} = \frac{D}{A} * \frac{Zxm - Zsm}{1 - Zxm / Zom}$$

Lx should be calculated with the following equation:

$$Lx = \frac{\operatorname{Im}(Zx)}{2\pi f} = \frac{\operatorname{Im}(Zxm + Zsc)}{2\pi f} = \frac{\operatorname{Im}(Zxm)}{2\pi f} + \frac{\operatorname{Im}(Zsc)}{2\pi f} = Lxm + Lsc$$

Lxm: Measured chip inductor inductance Lsc: Measured short chip inductance Lx: Nominal Inductance of chip inductor

Compensation Value (Lsc) of Short Chip

Series	Compensation Value
UHQ0402H-P01	0.11nH

1. Scope

This specification applies to UHQ0402H-P01 series of thin film radio frequency inductor.

2. Product Description and Identification (Part Number)

1) Description

UHQ0402H-P01 series of thin film radio frequency inductor.

Categories: general confidential

2) Product Identification (Part Number)

<u>UHQ</u>	0402	<u>H</u>	XXX		<u></u>	<u>01</u>
1	2	3	4	(5)	6	7

1	Туре
UHQ	Super Q Ceramic Chip Inductor

UHQ	Super Q C	eramic Chip Inductor		(0402 [01005]	0.4 X 0.2
③ Applications and Characteristics Code				4	Nominal I	nductance
	OL: TI: 1 0.00					-

Н		Chip Thickness=0.20mn		
(5)	Induc	tance Tolerance		
	B, C, S	±0.1、±0.2、±0.3nH		
	G、H、J	±2%、±3%、±5%		

4 Nominal I	Nominal Inductance			
Example	Example			
3N9	3N9			
10N	10N			
10N	10N			

External Dimensions (L X W) (mm)

6	Packing			
Р	Plastic Tape Carrier Package			

7	Serial Code		
01		Internal code	

3. Electrical Characteristics

Please refer to Appendix A (Page10-12).

- Operating and storage temperature range (individual chip without packing): -55 °C ~ +125 °C,
- 2) Storage temperature range (packaging conditions): -10 °C ~+40 °C and RH 70% (Max.)

4. Shape and Dimensions

- 1) Dimensions and recommended PCB pattern for reflow soldering: See Fig.4-1, Fig.4-2 and Table 4-1.
- 2) Structure: See Fig. 4-3 and Fig. 4-4.

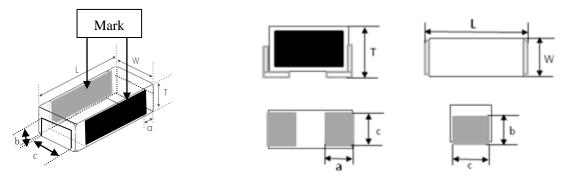


Fig. 4-1

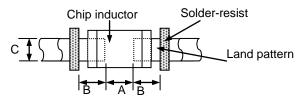


Fig. 4-2

[Table 4-1] Unit: mm [inch]

Type	L	W	Т	а	b	С	А	В	С
0402	0.4±0.02	0.2±0.02	0.2±0.02	0.14±0.03	0.14±0.03	0.17±0.03	0.15~0.19	0.18~0.22	0.18~0.22
[01005]	[.016±.0008]	[.008±.0008]	[.008±.0008]	[.005±.0010]	[.005±.0010]	[.006±.0010]	0.15~0.19	0.16~0.22	0.16~0.22

Structure of Electro-plating Sn Ceramic

- Ceramic for UHQ Series
- ② Internal electrode (Ag)
- ③ Pull out electrode(Ag)
- 4-1 Terminal electrode: Inside (Ag)
- 4-2 Outside (Electro-plating Ni-Sn)

[Fig 4-3] [Fig 4-4]

3) Material Information: See Table 4-2

Table 4-2

Code	Part Name	Material Name
1	Ceramic Body	Ceramic Powder
2	Inner Coils	Silver Paste
3	Pull-out Electrode (Ag)	Silver Paste
4 -1	Terminal Electrode: Inside Ag	Silver Paste
4 -2	Electro-Plating: Ni/Sn plating	Plating Chemicals

4) Soldering Notice: The surface with the mark should be on the two beside when soldering

5. Test and Measurement Procedures

5.1 Test Conditions

- 5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:
 - a. Ambient Temperature: 20±15℃
 - b. Relative Humidity: 65±20%
 - c. Air Pressure: 86 KPa to 106 KPa
- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2℃
 - b. Relative Humidity: 65±5%
 - c. Air Pressure: 86KPa to 106 KPa

5.2 Visual Examination

a. Inspection Equipment: 60 X magnifier

5.3 Electrical Test

- 5.3.1 DC Resistance (DCR)
 - a. Refer to Appendix A.
 - b. Test equipment (Analyzer): Super Accuracy Milliohmmeter-HP4338B or equivalent.

5.3.2 Inductance (L)

- a. Refer to Appendix A.
- b. Test equipment: Super Accuracy RF Impedance /Material Analyzer-E4991A+16196D or equivalent.
- c. Test signal: -20dBm or 50mV
- d. Test frequency refers to Appendix A.
- e. Short bar residual inductance=0.11nH

5.3.3 Q Factor (Q)

- a. Refer to Appendix A.
- b. Test equipment: Super Accuracy RF Impedance /Material Analyzer-E4991A+16196D or equivalent.
- c. Test signal: -20dBm or 50mV
- d. Test frequency refers to Appendix A.

5.3.4 Self-Resonant Frequency (SRF)

- a. Refer to Appendix A.
- b. Test equipment: Agilent 8719ES or equivalent.
- c. Test signal: -20 dBm or 50 mV

5.3.5 Rated Current

- a. Refer to Appendix A.
- b. Test equipment (see Fig. 5.3.5-1): Electric Power, Electric current meter, Thermometer.
- c. Measurement method (see Fig. 5.3.5-1):
 - 1. Set test current to be 0 mA.
 - 2. Measure initial temperature of chip surface.
 - 3. Gradually increase voltage and measure chip temperature for corresponding current.
- d. Definition of Rated Current(Ir): Ir is direct electric current as chip surface temperature rose just 20 ℃ against chip initial surface temperature(Ta) (see **Fig. 5.3.5-2**).

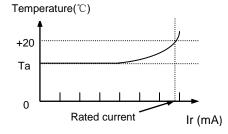


Fig. 5.3.5-1

Fig. 5.3.5-2

5.4 Reliabilit	Requirements	Test Methods and Remarks
5.4.1 Terminal Strength	No removal or split of the termination or other defects shall occur. Chip Mounting Pad Glass Epoxy Board Fig.5.4.1-1	Solder the inductor to the testing jig (glass epoxy board shown in Fig. 5.4.1-1) using leadfree solder. Then apply a force in the direction of the arrow. 1N force for UHQ0402H-P01 series. Keep time: 10±1s Speed: 1.0mm/s.
5.4.2 Resistance to Flexure	No visible mechanical damage. Unit: mm [inch] Type a b c 0402[01005] 0.18 0.8 0.2	 Solder the inductor to the test jig (glass epoxy board shown in Fig. 5.4.2-1) Using a leadfree solder. Then apply a force in the direction shown Fig. 5.4.2-2. Flexure: 2mm. Pressurizing Speed: 0.5mm/sec. Keep time: 30 sec.
5.4.3 Vibration	 No visible mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. Cu pad Solder mask Glass Epoxy Board Fig. 5.4.3-1 	 Solder the inductor to the testing jig (glass epoxy board shown in Fig. 5.4.3-1) using leadfree solder. The inductor shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions (total of 6 hours).
5.4.4 Dropping	 No visible mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	Drop chip inductor 10 times on a concrete floor from a height of 100 cm.
5.4.5	Inductance change should be within ±10% of initial	Temperature range: UHQ0402H-P01: -55℃ to +125℃,
5.4.6 Solderability	value measuring at 20℃. ① No visible mechanical damage. ② Wetting shall exceed 95% coverage.	Reference temperature: +20°C ① Solder temperture:240±2°C ② Duration: 3 sec. ③ Solder: Sn/3.0Ag/0.5Cu. ④ Flux: 25% Resin and 75% ethanol in weight.
5.4.7 Resistance to Soldering Heat	 No visible mechanical damage. Wetting shall exceed 75% coverage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	 Solder temperature: 260±3°C Duration: 5 sec. Solder: Sn/3.0Ag/0.5Cu. Flux: 25% Resin and 75% ethanol in weight. The chip shall be stabilized at normal condition for 1~2 hours before measuring.

Packaging and Storage

6.1 Packaging

Super

Temperature

(Life Test)

Tape Carrier Packaging:

3

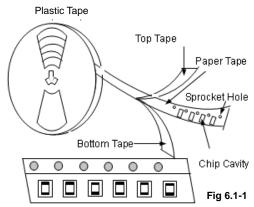
Packaging code: P

- Tape carrier packaging are specified in attached figure Fig.6.1-1~3
- Tape carrier packaging quantity please see the following table:

Inductance change: Within ±10%.

Q factor change: Within ±20%.

Type	0402[01005]
Thickness (mm)	0.2±0.02
Tape	Plastic Tape
Quantity	40K


3

Applied current: Rated current.

before measuring.

The chip shall be stabilized at normal condition for 1~2 hours

(1) Taping Drawings (Unit: mm)

Remark: The sprocket holes are to the right as the tape is pulled toward the user.

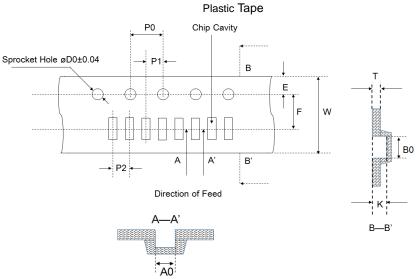


Fig. 6.1-2

Table 6.1-1 Unit:mm

Туре	A0	В0	Т	W	K	P0	P1	P2	D0	F	E
0402	0.24±0.02	0.44±0.02	2.0±0.05	4.0±0.05	0.24±0.02	2.0±0.04	1.0±0.02	1.0±0.02	0.80±0.04	1.8±0.02	0.9±0.05

Reel Dimensions (Unit: mm)

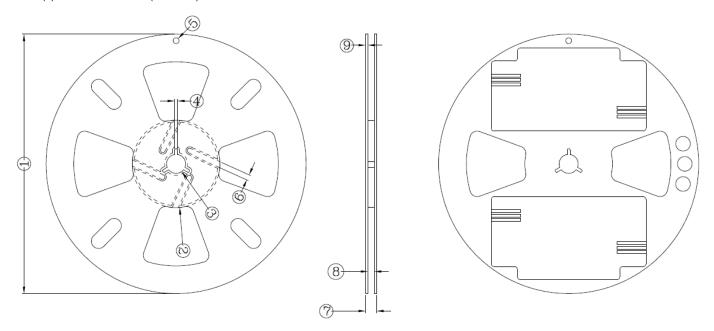


Fig. 6.1-3

Table 6.1-2 Unit:mm

1	2	3	4	5	6	7	8	9
178±1.0	60±1.0	13±0.3	2.0±0.5	4±0.2	4±0.5	7.5±1	4.5±0.5	1.5±0.3

6.2 Storage

- a. The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to Super humidity. Package must be stored at 40°C or less and 70% RH or less.
- b.The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to dust of harmful gas (e.g. HCl, sulfurous gas of H₂S).
- c. Packaging material may be deformed if package are stored where they are exposed to heat of direct sunlight.
- d.Solderability specified in Clause 5.4.6 shall be guaranteed for 12 months from the date of delivery on condition that they are stored at the environment specified in Clause 3. For those parts, which passed more than 12 months shall be checked solder-ability before use.

7. Recommended Soldering Technologies

7.1 Reflow Profile

 \triangle Preheat condition: 150 ~200 $^{\circ}\text{C}/60\text{~120sec}.$

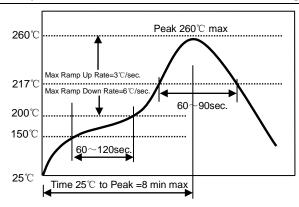
Categories: general confidential

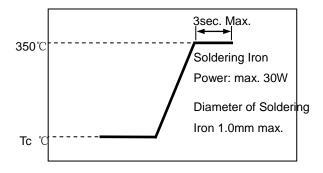
△ Allowed time above 217°C: 60~90sec.

△ Max temp: 260°C

 \triangle Max time at max temp: 10sec. \triangle Solder paste: Sn/3.0Ag/0.5Cu \triangle Allowed Reflow time: 2x max

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]




 \triangle Iron soldering power: Max. 30W

 \triangle Pre-heating: 150°C/60sec.

△ Soldering Tip temperature: 350°C Max.

[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

Appendix A: Electrical Characteristics (UHQ0402H-P01 Series of Inductors)

UHQ0402H-P01 Series of Inductor												
		Min.	L, Q	Typical Q @ Freq.					Min .Self-resonant	Max. DC	Max .Rated	
Part Number	Inductance	Quality	Test	(GHz)					Frequency	Resistance	Current	Thickness
		Factor	Freq .L/Q	0.5	8.0	1.8	2.0	2.4	1 requestioy	rtoolotarioo	Curron	
Units	nH	-	MHz	-					MHz	Ω	mA	mm [inch]
Symbol	L	Q	Freq			Q			S.R.F	DCR	lr	Т
UHQ0402H0N2□P01	0.2	-	500	-	-	-	-	-	16600	0.08	990	
UHQ0402H0N3□P01	0.3	-	500	-	-	-	-	-	16600	0.08	990	
UHQ0402H0N4□P01	0.4	-	500	-	-	-	-	-	16600	0.08	990	
UHQ0402H0N5□P01	0.5	-	500	-	-	-	-	-	16600	0.08	730	
UHQ0402H0N6□P01	0.6	13	500	18	23	40	42	51	16600	0.08	730	
UHQ0402H0N7□P01	0.7	13	500	18	23	39	41	49	16600	0.08	730	
UHQ0402H0N8□P01	0.8	13	500	18	23	38	41	48	16600	0.11	630	
UHQ0402H0N9□P01	0.9	13	500	18	23	38	40	48	16600	0.11	580	
UHQ0402H1N0□P01	1	13	500	17	22	37	40	48	16600	0.11	580	
UHQ0402H1N1□P01	1.1	13	500	17	22	37	39	41	16600	0.11	580	
UHQ0402H1N2□P01	1.2	13	500	17	22	36	38	40	16600	0.17	550	
UHQ0402H1N3□P01	1.3	13	500	17	22	35	37	39	16000	0.17	400	
UHQ0402H1N4□P01	1.4	13	500	17	22	35	36	43	15000	0.17	400	
UHQ0402H1N5□P01	1.5	13	500	17	22	35	36	37	15000	0.17	390	
UHQ0402H1N6□P01	1.6	13	500	17	22	35	37	40	15000	0.23	390	
UHQ0402H1N7□P01	1.7	13	500	17	20	35	37	40	15000	0.23	380	
UHQ0402H1N8 = P01	1.8	13	500	17	21	34	36	39	15000	0.23	380	
UHQ0402H1N9□P01	1.9	13	500	17	20	34	36	40	13000	0.23	380	
UHQ0402H2N0□P01	2	13	500	17	21	35	37	40	13000	0.24	380	
UHQ0402H2N1□P01	2.1	13	500	17	20	33	36	40	13000	0.24	380	0.2±0.02
UHQ0402H2N2□P01	2.2	13	500	17	23	36	39	39	13000	0.24	380	[.008±.0008]
UHQ0402H2N3 = P01	2.3	13	500	17	21	34	36	43	13000	0.29	370	
UHQ0402H2N4□P01	2.4	13	500	17	23	35	37	40	13000	0.29	370	
UHQ0402H2N5□P01	2.5	13	500	17	21	34	36	40	11500	0.3	370	
UHQ0402H2N6□P01	2.6	13	500	17	20	34	36	40	11500	0.3	370	
UHQ0402H2N7 _□ P01	2.7	13	500	17	21	34	36	39	11500	0.32	370	
UHQ0402H2N8□P01	2.8	13	500	17	20	33	35	40	10000	0.32	360	
UHQ0402H2N9□P01	2.9	13	500	17	20	32	35	40	10000	0.35	360	
UHQ0402H3N0□P01	3.0	13	500	17	19	32	34	39	10000	0.35	360	
UHQ0402H3N1□P01	3.1	13	500	17	20	32	35	40	10000	0.4	290	
UHQ0402H3N2□P01	3.2	13	500	17	20	32	35	40	10000	0.4	290	
UHQ0402H3N3□P01	3.3	13	500	17	20	33	35	37	10000	0.4	290	
UHQ0402H3N4□P01	3.4	13	500	17	19	31	33	37	9700	0.4	280	
UHQ0402H3N5□P01	3.5	13	500	17	19	32	34	36	9700	0.4	280	
UHQ0402H3N6□P01	3.6	13	500	17	19	31	33	35	9700	0.4	280	
UHQ0402H3N7□P01	3.7	13	500	17	19	31	33	37	9700	0.4	270	
UHQ0402H3N8□P01	3.8	13	500	17	19	31	33	36	9700	0.48	270	
UHQ0402H3N9□P01	3.9	13	500	17	19	28	29	34	9700	0.48	270	
UHQ0402H4N0□P01	4	13	500	17	18	29	32	34	9000	0.48	270	
UHQ0402H4N1□P01	4.1	13	500	17	19	29	32	35	9000	0.6	270	
,	i											

Sunlord	Categorie	ral confide	ntia	ı		Spe	ecific	ations for Thin Film	Page 11 of 12			
Part Number	Inductance			Min .Self-resonant Frequency	Max. DC Resistance	Max .Rated Current	Thickness					
Units	nH	-	MHz	-		MHz	Ω	mA	mm [inch]			
Symbol	L	Q	Freq	Q		S.R.F	DCR	lr	Т			
UHQ0402H4N2□P01	4.2	13	500	17	19	31	33	35	9000	0.6	270	
UHQ0402H4N3□P01	4.3	13	500	17	19	29	32	35	9000	0.6	270	
UHQ0402H4N7□P01	4.7	13	500	17	19	28	31	34	8500	0.6	270	
UHQ0402H5N1□P01	5.1	13	500	17	19	29	32	35	7800	0.6	250	
UHQ0402H5N6□P01	5.6	13	500	17	20	34	35	37	7800	0.65	230	
UHQ0402H6N2□P01	6.2	13	500	17	20	34	35	36	7200	0.7	220	
UHQ0402H6N8□P01	6.8	13	500	17	21	33	35	37	6600	0.8	210	
UHQ0402H7N5□P01	7.5	13	500	16	21	32	35	37	6600	0.8	200	
UHQ0402H8N2 _P 01	8.2	13	500	17	23	33	35	37	6600	0.85	190	0.2±0.02
UHQ0402H9N1□P01	9.1	13	500	17	23	32	35	36	5900	0.95	170	[.008±.0008]
UHQ0402H10N□P01	10	13	500	16	22	29	33	35	5900	0.95	170	
UHQ0402H11N□P01	11	13	500	16	22	28	29	32	3500	1.1	140	
UHQ0402H12N□P01	12	13	500	16	22	28	29	32	3500	1.2	140	

Note: \Box : Please specify the inductance tolerance. For L \leq 4.2nH, choose B=±0.1nH, C=±0.2nH or S=±0.3nH; For 4.2nH<L<5.6nH, choose, H=±3%, J=±5%. or S=±0.3nH; For L \geq 5.6nH, choose, H=±3%, J=±5%

26

28 29

28 | 29

28 29

25 | 26

29

3000

3000

3000

2500

2500

140

140

140

140

140

1.3

1.4

1.4

1.5

1.5

UHQ0402H13N□P01

UHQ0402H15N_P01

UHQ0402H16N_P01

UHQ0402H18N□P01

UHQ0402H20N□P01

13

15

16

18

20

12

12

12

10

10

500

500

500

500

500

16 22

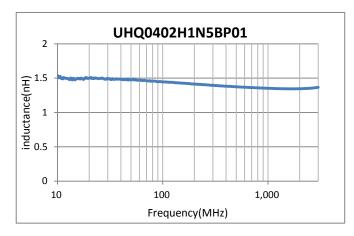
16

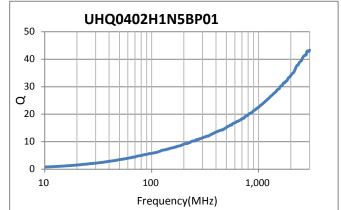
16 21 26

16 21 26 28

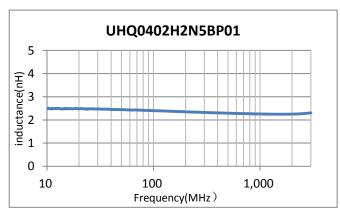
16

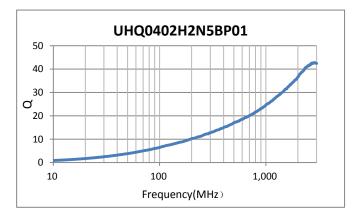
21 26

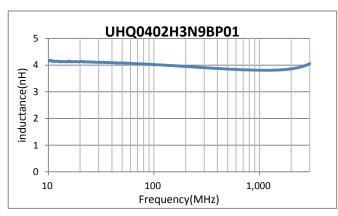

19 24

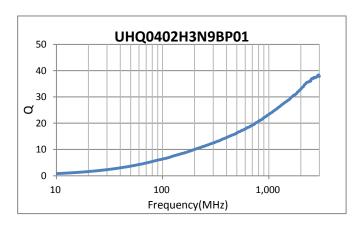

Categories: general confidential TYPICAL ELECTRICAL CHARACTERISTICS

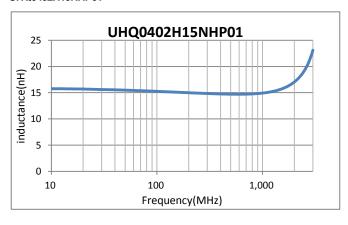
Inductance-Frequency Characteristics(Typ.)

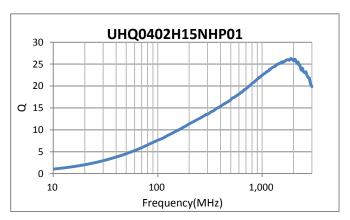

Q-Frequency Characteristics(Typ.)


UHQ0402H1N5BP01




UHQ0402H2N5BP01




UHQ0402H3N9BP01

UHQ0402H15NHP01

